As we wait for others to join, start playing and exploring with the Cuisenaire rods. Use the Zoom 'Annotate' feature to generate questions about the rods here.

Cuisenaire Rods: Endless Possibilities!

Dr. Lauren Schiller

lauren.schiller@tc.columbia.edu

AGENDA

\square Introductions
Question Generation about Rods
\square Brief Background on Research
Connecting Rods to Number Lines
Estimation
\square Place Value
Addition, Subtraction, Multiplication, Division
\square Fractions
Lesson Planning

Fractions

Number lines are very important!!

Integers

(Fuchs et al., 2013; Fuchs et al., 2014; Saxe et al., 2013; Rittle-Johnson et al., 2001; Schneider et al., 2009; Moss \& Case, 1999)

Type of Magnitude and Main Acquisition Period

Small whole numbers (≈ 3 to 5 years)

Larger whole numbers (≈ 5 to 7 years)

(Siegler, 2016)

Fractions $0-\mathrm{N}(\approx 11$ years to adulthood $)$

Rational numbers (including negatives) (≈ 11 years to adulthood)

Integrated Theory of Numerical Development

Siegler, Thompson, \& Schneider, 2011

Early Predictors of High School Math Achievement Siegler et al., 2012

$$
\begin{array}{r}
26 \\
4 \begin{array}{r}
104 \\
-0| | \\
\hline 10 \\
-8 \\
\hline 24 \\
\hline-24 \\
\hline 0
\end{array}
\end{array}
$$

Non-symbolic Ratio Processing System (RPS) predicts fraction and algebra knowledge Matthews et al., 2016; Lewis et al., 2016

Non-symbolic Ratio Processing System (RPS) predicts fraction and algebra knowledge Matthews et al., 2016; Lewis et al., 2016

Do these remind you of anything?

(7) Roberto A. Abreu-Mendoza • Linsah Coulanges \cdot Kendell Ali \cdot Show all 5 authors

- Miriam Rosenberg-Lee

Arrange in Order, Shortest to Longest

number of units

Did you make a staircase?

Can you label them?

Grab Bag
Game 1: 1 of each color
Game 2: 2 of each color
Game 3-4: 3 of each color
Game 5: Students pick 1030 rods to put in the bag

Make Trains Equivalent to....
 Yellow
 Dark Green Black

https://nrich.maths.org/4348

Non-Symbolic Number Line Estimation: Addition

Number Line Estimation

Symbolic
 Number Line Estimation: Addition

Number Line Estimation

Number Line Estimation

Non-Symbolic
 Number Line Estimation: Subtraction

Number Line Estimation

Make 10

https://nrich.maths.org/4348

Go Fish!

Go Fish!

Place Value

Thousands	Hundreds		Tens
1	2	3	Ones
1			4

Try some addition problems

$19+4$
$39+13$

Try some addition problems

$19+4$

1
19
$+4$

Try some addition problems

$39+13$

Try some addition problems

$39+13$

Try some addition problems

 39+13$\begin{array}{r}1 \\ 39 \\ +13 \\ \hline 52\end{array}$

Try some subtraction problems

19-4

33-19

Try some subtraction problems

19-4

Try some subtraction problems

19-4

19
$\frac{-4}{15}$

Try some subtraction problems

33-19

33
-19

Try some subtraction problems

33-19

213

33
$\frac{-19}{14}$

Try some subtraction problems

$$
\begin{gathered}
33-19 \\
213 \\
33 \\
\frac{-19}{14}
\end{gathered}
$$

\square

Try some subtraction problems

33-19

213
33
$\frac{-19}{14}$

Which is longer?

- Predict
- Then, Check

Which is bigger 4 of the brown rods or 5 of the black rods?

What operation is this? Can you write a number sentence?

4 of the brown rods 5 of the black rods

$4 \times 8=$
$5 \times 7=$
$6 \times 4=$
$5 \times 6=$

How can this be written with words referring to rods?

$6 \times 4=$
$5 \times 6=$

6 of purple
5 of dark green

Try some multiplication problems

 5×6 6x5

Try some multiplication problems 4x7
 12x2
 14x8

http://www.educationunboxed.com/mult iplying-2-digit-by-1-digit-numbers/

Ready for some more?
10×10
11×10
12×13

Where does the algorithm come from? Relate to the rods.

Where does the algorithm come from? Relate to the rods.
http://www.educationunboxed.com/multiplying-large-numbers/ start at 8:04

What about division?

Let's try some division!

$72 \div 3$

Where does the algorithm come from? Relate to the rods.http://www.educationunboxed.com/long-division-part-one/

Let's try some division!

$117 \div 9$

Where does the algorithm come from? Relate to the rods.http://www.educationunboxed.com/long-division-part-one/

Let's try some division!

$84 \div 6$

Where does the algorithm come from? Relate to the rods.http://www.educationunboxed.com/long-division-part-one/

How many Rutherfords would fit in St. Louis?

Fractions

What color is $1 ?$

What color is $\mathbf{1 / 2}$?

What color is $1 / 3 ?$

What color is $\mathbf{1 / 6} \boldsymbol{?}$

What other fractions can you make using the Cuisenaire rods?

Fraction Magnitude Representation

Fraction Magnitude Representation

Fraction Magnitude Representation

Adding/subtracting fractions with unlike denominatorswhat do we need to remember?

$S_{\text {ubtraction \& }} A_{\text {ddition need a Common }} D_{\text {enominator }}$

Number Line Estimation

Number Line Estimation

Number Line Estimation

Number Line Estimation

Numeric	Visual	Equation

Numeric	Visual	Equation
$\frac{1}{3}$		
$\frac{5}{6}$		

Numeric	Visual	Equation
$\frac{2}{3}$		
$\frac{1}{6}$		

Aunt Elyse's Famous Salad Dressing Recipe:

$$
\begin{aligned}
& \frac{1}{3} \text { cup olive oil } \\
& \frac{1}{6} \text { cup vinegar } \\
& \text { pinch of oregano } \\
& \text { pinch of salt }
\end{aligned}
$$

How many cups of salad dressing will this recipe make? Write an equation to represent your thinking. Assume that the herbs/salt do not change the amount of dressing.

If this recipe makes 6 servings, how many cups of olive oil and how many cups of vinegar will we need for 18 people?

Numeric	Visual	Equation
$\frac{1}{3}$		
$\frac{1}{6}$		

EXIT TICKET

A student solved a problem this way:

$$
\frac{1}{2}+\frac{2}{6}=\frac{3}{8}
$$

Explain whether the student is right or wrong and justify your reasoning.

Game/Activity Workshop

\square Select a grade level standard and create a game/activity using the Cuisenaire rods
\square Check out some videos on Educationunboxed.com or elsewhere for Math Games/Activities

- Upload directions for your game to Padlet https://padlet.com/lks2132/kansasrods
- SPEED TEACH!

Thank you!

lauren.schiller@tc.columbia.edu

