

CORE MATH®

Five Favorite Strategies for Teaching About Fractions

Dean Ballard

Director of Mathematics, CORE Inc.

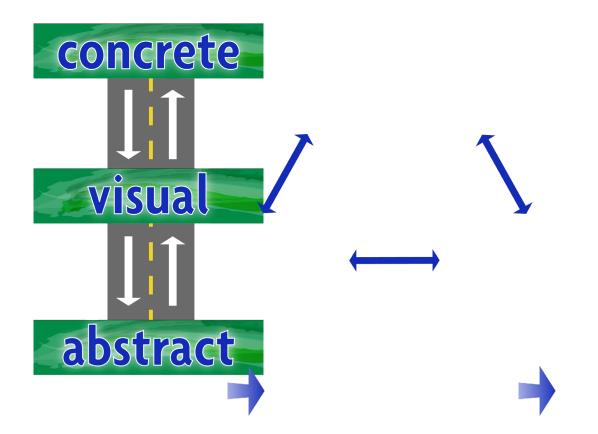
www.corelearn.com

Icons in the Session Today

• Enter response into Chat.

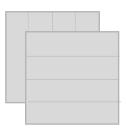
• On your own paper.

www.corelearn.com


Objectives

- See **physical and visual models** that are flexible, doable, and clearly connect fraction concepts.
- Recognize connections between fraction concepts and whole number concepts.
- Learn how **fraction concepts build on each other** in sensible ways.
- Recognize the **number line** as a key tool for understanding fraction concepts.
- Experience challenge problems with fractions that extend and assess student understanding.
- Gain ideas for **fluency building activities** that are fun and effective.


Progression of Learning Concrete – Visual - Abstract


www.corelearn.com

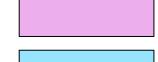
Paper Folding 1

- Students work in pairs. Each student has three pieces of letter size paper (8¹/₂" by 11").
- Fold one paper in half. What does this make? Record.
 - One student fold vertically, and one fold horizontally
- Fold another paper in half twice. What does this make?
 - One student fold vertically, and one fold horizontally
- Fold another paper in half 3 times. What does this make?
 - One student fold vertically, and one fold horizontally
- Compare / discuss, how many fourths make a half? How many eighths make a half? How many eighths make a fourth? Are you and your partner's halves equal? Why?

			1	

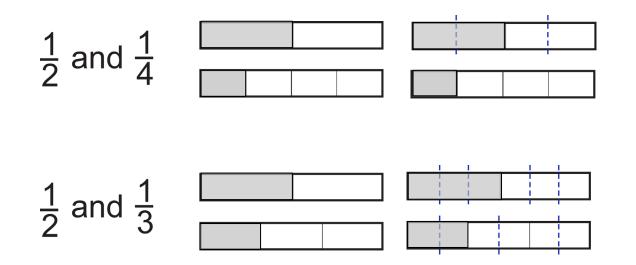
REMATH

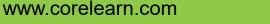
Visualize Fractions with Paper Folding


- Teach using visual representations. Write the fraction on these strips in words on one side, in symbols on the other side.
 - Fold the <u>pink</u> paper strip into <u>halves</u>
 - Fold the <u>blue</u> paper strip into <u>fourths</u>
 - Fold the beige paper strip into eighths
 - Fold the <u>yellow</u> paper strip into <u>thirds</u>
 - Fold the green paper strip into sixths
 - Fold the white paper strip into fifths

www.corelearn.com

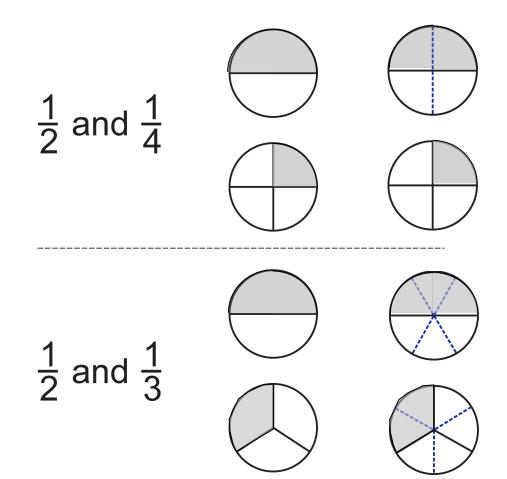
VIDEOS



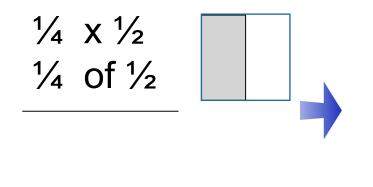


Comparing Fractions with - Tape Diagrams

How can I change each tape diagram so that both have the same-size parts?



Circle Diagrams

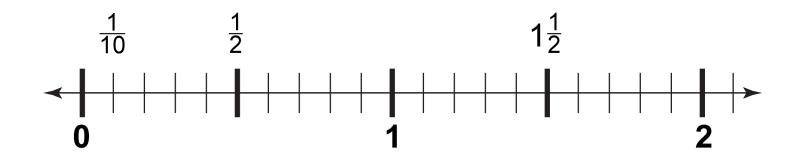

How can I change each circle diagram so that both have the samesize parts or the same **UNITS**?

www.corelearn.com

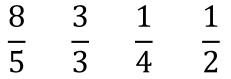
Using Area Models to Visualize Multiplication

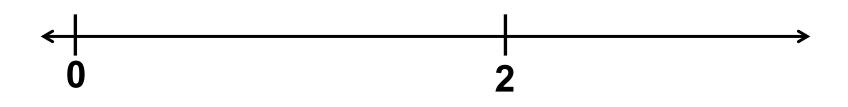
$$\frac{1}{4} \times \frac{1}{2} = \frac{1}{4 \times 2} = \frac{1}{8}$$
$$\frac{1}{2} \times \frac{1}{4} = \frac{1}{2 \times 4} = \frac{1}{8}$$

When we are multiplying ½ by ¼ we are **dividing** each half of the whole by four. **So, why do we multiply the denominators?**


We are creating **four times** as many parts!

Number Lines - Fractions as Numbers

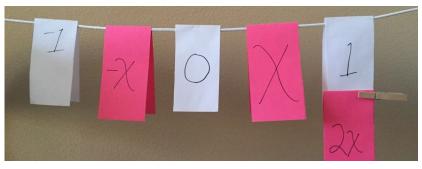

A fraction is a representation of a number. As such it can be placed on the number line.



Number Lines - Fractions as Numbers

Draw this number line as shown below on your paper. Place the four fractions shown above on the number line.

www.corelearn.com


Clothes Line Number Lines with Fractions

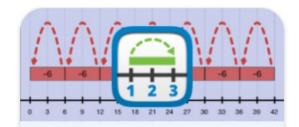
FractionTalks.com

Chase Orton UndercoverCalculus.com

ClothesLineMath.com

www.corelearn.com

Online Visual Tools



https://www.mathlearningcenter.org/apps

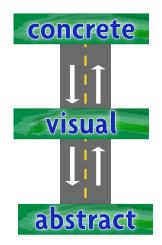
FRACTIONS

Represent fractions with denominators from 1 to 100 with circle and bar models.

NUMBER LINE

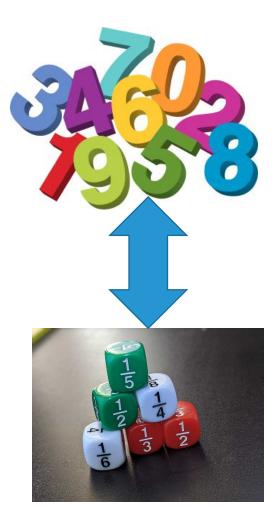
Visualize and work with numbers in sequence on a virtual number line with or without tick marks.

PREVIEW



Wrap Up – Concrete – Visual - Abstract

Importance of using concrete and visual models connected with and leading to abstract or symbolic numerical representations of fractions, fraction properties and operations with fractions.


- Paper folding activities
- Rectangular diagrams/tape diagrams
- Number lines (& clothesline number lines)
- Online visual tools (such as *The Math Learning Center apps*)

Connecting Fractions with Whole Numbers

- Concept of Units
- Fractions as Numbers
- Equivalent Fractions
- Addition and Subtraction
- Multiplication and Division

www.corelearn.com

Directions in Standards for Connections

Grade 3	<u>Grade 4</u>	<u>Grade 5</u>	<u>Grade 6</u>
 Unit fractions Part-whole Equal parts Same size wholes Fractions as numbers Compare fractions Use visual models 	 Equivalent fractions Use unit fractions to compose and decompose fractions Use previous understandings with operations to understand addition, subtraction, and multiplication of fractions Use visual models Solve word problems for addition and subtraction Decimal fractions 	 Apply understanding of fractions to add and subtract with unlike denominators Fluency with addition and subtraction Estimate sums and differences Use previous understandings with operations to understand multiplication and division Make sense of multiplication and division Solve word problems for addition, subtraction multiplication, and division Use visual models 	 Compute quotients with fractions. Interpret quotients Solve word problems with fraction operations Use visual models Use equations

UNITS – From Place Value to Fractions

Place Value

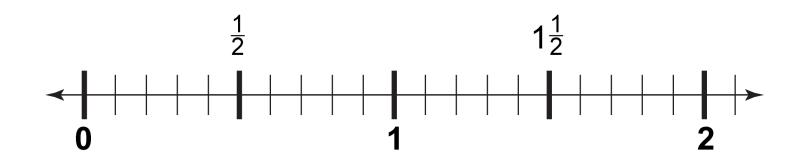
thousands, hundreds, tens,

ONES,

tenths, hundredths, thousandths

Units

- Units ones, tens, hundreds, thousands . . .
- Units tenths, hundredths, thousandths . . .
- Units halves, thirds, fourths, fifths, tenths ...


Denominator - describes the **unit** with fractions, based on partitioning the "ones" unit.

Number Lines - Fractions as Numbers

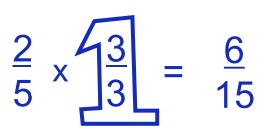
A fraction is a representation of a number. As such it can be placed on the number line.

Equivalent Fractions

Multiplicative identity property:

Any number x 1 = the same number

18 x 1 = 18


Same property is central to creating equivalent fractions.

 $\frac{2}{5} \times 1 = \frac{2}{5}$

However, the end result doesn't always look the same.

Suppose we multiply 2/5 by 3/3? The results looks like a different value.

Use prior visual models, and talk about multiplying by the "big bad one."

CORE MATH

Multiple Equivalent Representations

Show another way to numerically represent 451 besides as (4 hundreds + 5 tens + 1 one).

- 4 hundreds + 4 tens + 11 one
- 3 hundreds + 15 tens + 1 one
- 3 hundreds + 14 tens + 11 ones

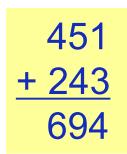
Show another way to numerically represent $\frac{1}{r}$.

2

- > 4/10
- > 8/20
- ▶ 6/15

6

2



451

Addition and Subtraction – Like Units

Whole numbers: Combine like units

- Ones with ones
- Tens with tens
- Hundreds with hundreds

Fractions:

Combine like units (denominators are the units!)

- Fourths with fourths,
 - Fifths with fifths,
 - Fifteenths with fifteenths . . .

$$\frac{2}{5} - \frac{2}{15} = \frac{6}{15} - \frac{2}{15} = \frac{4}{15}$$

www.corelearn.com

Emphasize and Name the Units

Whole numbers:

 $40 + 50 = 90 \rightarrow 4 \text{ tens} + 5 \text{ tens} = 9 \text{ tens}$

Fractions:

$1/5 + 3/5 = 4/5 \rightarrow 1$ fifth + 3 fifths = 4 fifths

www.corelearn.com

Multiplication

Multiplication of Whole Numbers: $3 \times 5 = 5 + 5 + 5 = 15$

Multiplication of Fractions:

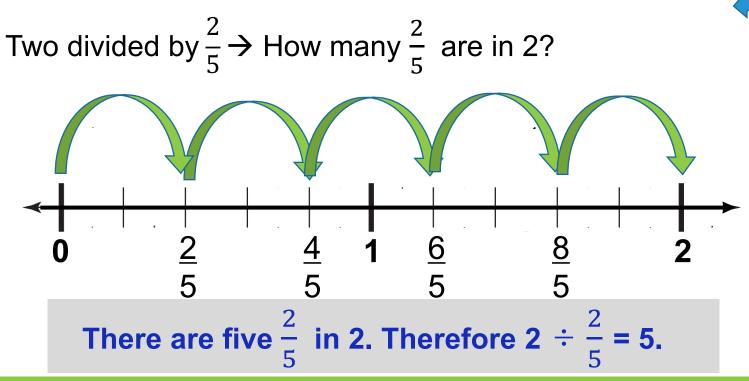
$$3 \times \frac{1}{5} = \frac{1}{5} + \frac{1}{5} + \frac{1}{5} = \frac{3}{5}$$

Multiplication of Fractions:

$$3 \times \frac{2}{5} = \frac{2}{5} + \frac{2}{5} + \frac{2}{5} = \frac{6}{5}$$

 $\frac{3\times 2}{5} = \frac{6}{5}$

www.corelearn.com

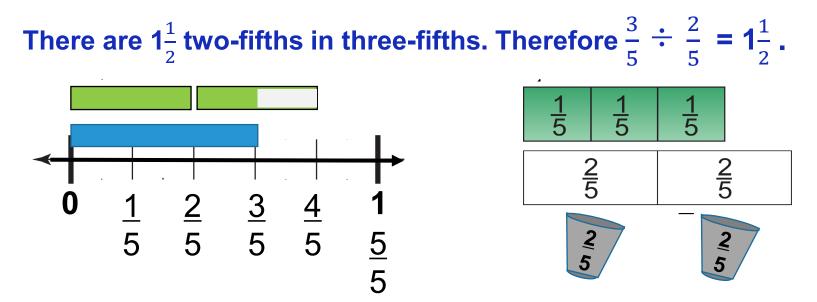

Division – How Many In the Group?

Division with Whole Numbers:

12 divided by 4 \rightarrow How many fours are in 12?

• There are three 4s in 12. 12 divided by 4 = 3.

Division with Fractions:


www.corelearn.com

Batches of Muffins

I have $\frac{3}{5}$ cup of sugar left in my sugar container. I need $\frac{2}{5}$ of a cup of sugar for each whole batch of muffins. How many batches of muffins can I make?

 $\frac{3}{5} \div \frac{2}{5}$ = number of batches of muffins

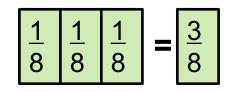
www.corelearn.com

Wrap Up – Connecting Fractions with Whole Numbers

- **Concept of Units** the denominator is the unit based on some part of the "ones" unit.
- Fractions as Numbers fit on a number line just like whole numbers and can be used to count parts of objects.
- Equivalent Fractions Big Idea that numbers can be represented in many equivalent forms, and we use different versions based on need.
- Addition and Subtraction Combine like units
- **Multiplication and Division** Repeated addition, area model, how many of one quantity is in the other quantity.

Connections Among Fraction Concepts

- Building fractions from unit fractions
- Patterns in division of fractions

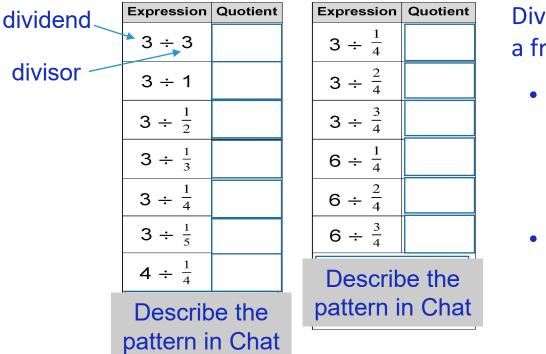


Building Fractions from Unit Fractions

Use unit fractions to compose and decompose fractions. (CCSSM 2010)

- With whole numbers we build on the "ones" unit.
- With fractions we build other fractions from unit fractions (fractions with a numerator of one).

$$\frac{3}{8} = 3\left(\frac{1}{8}\right) = \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{1}{8} + \frac{2}{8}$$
$$\frac{11}{8} = \frac{8}{8} + \frac{3}{8} = 1 + \frac{3}{8} = 1\frac{3}{8}$$



www.corelearn.com

Patterns with Fraction Division

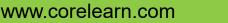
- Fill in the tables with the correct quotients.
- Describe any patterns you notice.
- In CHAT describe a shortcut for the pattern you see in the table.

Dividing a whole number by a fraction is the same as

- multiplying the whole number by the denominator of the fraction; and then
- dividing this answer by the numerator of the fraction.

Connecting Concepts with Multiplication and Division

Divide	Multiply
12 ÷ 3	
12 ÷ 4	
12 ÷ 6	


Dividing a whole number by a fraction is the same as multiplying the whole number by the reciprocal of the fraction.

Learning About Fractions – So Far

- Concrete Visual Abstract
- Connecting fractions to whole numbers concepts
- Connecting fractions to other fraction concepts
 - Building on unit fractions
 - The division algorithm through patterns

© 2019 Consortium on Reaching Excellence in Education, Inc.

concrete

abstrac

Which fraction has a value closest to $\frac{1}{2}$?

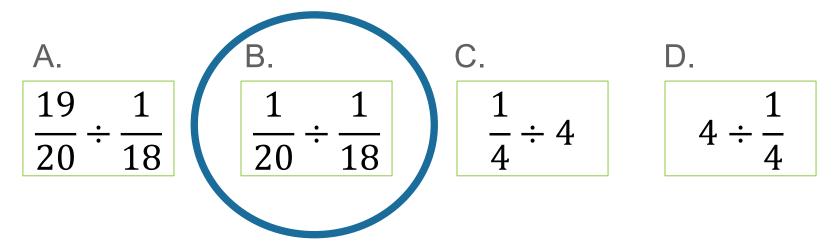
A. $\frac{5}{8}$ B. $\frac{1}{6}$ C. $\frac{2}{2}$ D. $\frac{1}{5}$

Which is the most popular incorrect answer?

4th-Grade NAEP, 2009

25% answered correctly (A)

40% chose C


www.corelearn.com

Thinking about Division

6-8: Examine the four division problems shown below.

Without calculating the quotients, which quotient is closest to 1? Explain and/or show your reasoning.

Comparing Fractions Without Using Common Denominators (or decimals or percent)

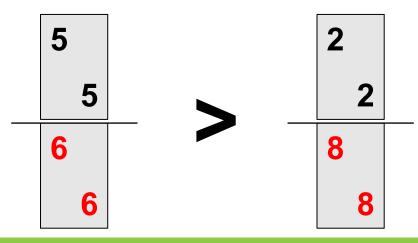
Compare the following pairs of fractions **without** converting to common denominators, common numerators, decimals, or percents, or using a number line. Pick one and explain your reasoning in Chat.

$$\frac{3}{7} < \frac{5}{8}$$
 $2. \frac{5}{6} > \frac{5}{8}$ $3. \frac{5}{6} > \frac{3}{4}$ $\frac{3}{7}$ is less than halfSixths are
greater than
eighths (same
size wholes) $\frac{5}{6}$ is $\frac{1}{6}$ from 1 $\frac{5}{8}$ is greater than halfSixths are
greater than
eighths (same
size wholes) $\frac{3}{4}$ is $\frac{1}{4}$ from 1

www.corelearn.com

Develop Fluency Through Engaging Activities

- Card Games
- Counting Activities



www.corelearn.com

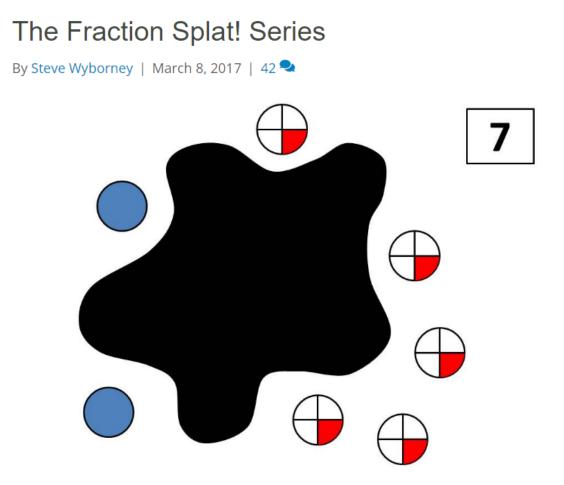
CORE MATH

Card Game – Fraction War

- Standard deck of cards
- Divide cards up between two players
- Each player mixes his/her cards face down in a stack.
- Each player turns over her/his first two cards.
- Each player uses their own two cards to create a fraction <u>equal to</u> <u>or less than one</u>.
- The player with the greater fraction wins the round.
- Optional: Record fractions on a play sheet.

www.corelearn.com

Counting Up and Down with Fractions


- Count by halves starting at 1
- Count by halves starting at 4¹/₂.
- Count by halves starting at ¼ (1³/₄, 2³/₄, 3³/₄, 3³/₄, 4³/₄)

Advice:

- Start small with very doable numbers
- Use very clear hand signals for counting up and down
- Focus on where students are at to move forward
- Require students to stay with your hand signals
- Go back and forth across whole numbers
- Discuss patterns and challenges
- Use a number line to visualize & build understanding

Fraction Splats! By Steve Wyborney

www.corelearn.com

Ideas We Explored Today

- Concrete Visual Abstract
- Connect fraction concepts with whole number concepts.
- Build fraction concepts on other fraction concepts
- Recognize the number line as a key tool
- Challenge problems to make us think.
- Engaging activities to build fluency

Antelope Canyon, Navajo Reservation

Pdf of Slides

- Dropping into Chat now.
- Also, putting in Chat a link you can use to make a copy to your own google drive.

www.corelearn.com

Thank you! Dean Ballard dballard@corelearn.com

Feedback (Link also in Chat)

CORE MATH[®] www.corelearn.com

www.corelearn.com

